
An Embedded Domain-Specific Language for Algebraic
Tournament Structures

Construction and Evaluation of Sorting Structures in Haskell

Michael Ledger, Australian National University*

November 20 2023

Abstract

An Embedded Domain-Specific Language (commonly known as eDSL) is developed
for easy expression and analysis of arbitrary tournament structures. The core tourna-
ment structure type is inspired by work on algebraic graph representations in Haskell,
and sorting networks, and enables composition in terms of either interleaving or se-
quencing. The core design balances between allowing arbitrary logic within a tour-
nament structure and what static analysis can be achieved given such a structure. A
software library is developed that, provides the foundations for future work inmeasur-
ing tournament characteristics such as reliability and fairness. Analogies from tourna-
ments to sorting networks are observed and common tournament structures are con-
trastedwith sorting networks to see how viable they can be as tournament structures. A
tool is also developed to perform and visualise tournaments described within the eDSL.

*u5582972@anu.edu.au

1

Contents

Introduction 3

Acknowledgements 3

Background andMotivation 4
Scope and aims of this project . 5

Definitions 6

Literature Review 7
“Design Guidelines for Domain Specific Languages” Karsai et al.[8] 7
“Algebraic graphs with class (functional pearl)” Mokhov[9] 8
“Thestructure, efficacy, andmanipulationofDoubleElimination tournaments”Stanton

et al.[7] . 8
“Double Elimination Tournaments: Counting and Calculating” Edwards[10] 9
“Simulating competitiveness and precision in a tournament structure: a reaper tourna-

ment” Dinh et al.[12] and “Reaper Tournament System” Pham et al.[13] 9
Description of the Reaper tournament structure algorithm 10
Reaper Elimination . 11
“Quantifying the unfairness of the 2018 FIFO World Cup qualification” Csató[4] and

“Risk of Collusion: Will Groups of 3 Ruin the FIFAWorld Cup?” Guyon[5] 11
“Handling fairness issues in time-relaxed tournaments with availability constraints”

Van Bulck et al.[14] . 12
“The impossibility of a perfect tournament” Placek[15] . 12
“A new knockout tournament seedingmethod and its axiomatic justification” Karpov[16] 13
“The efficacy of tournament designs” Sziklai et al.[17] . 13

Design 14
Analogies between sorting networks and tournaments . 14
A Type for Tournaments . 16
Final Definitions . 20
The Journeyman eDSL: An accumulating continuation over Tournament 21
A virtual machine for Tournaments . 21
Tournament Interaction and Display . 22

Demonstration of the Journeyman eDSL 23
Round Robin and Group Stage Round Robins . 23
Insertion Sort, and I Can’t Believe It Can Sort . 24
Single Elimination . 25
Double Elimination . 26

Future work and limitations 28

References 29

2

Introduction

Tournament structures are used to determine a ranking of players in a game,
such as a real-life sport or an eSport. Many different tournament structures are
employed in real games, for a variety of reasons; for example, what resources are
available, orhowmanyparticipants there are, orhowmuch time is available. More-
over, the choice of tournament structure can have a significant effect on the out-
comes of the tournament. The choice of what tournament structure ismost appro-
priate for a given set of circumstance is mostly an open one, and tournaments are
ran as a combination of other tournament types.
There is possible contribution to be made in helping to determine what tourna-

ment structures are most effective under the constraints of a real-world tourna-
ment. This project aims to make such a contribution, in the form of a software
library that helps with the design and evaluation of tournament structures.
More specifically, this project encapsulates my effort to do that over the course

ofmyundergraduateAdvancedComputingProject (COMP4560), by creating aEm-
beddedDomain-SpecificLanguage for tournamentdesignandevaluation, as aHaskell
library. Thesoftware librarydeveloped for thisproject is availableonlineonGitHub1,
which also hosts its API documentation2. This thesis then serves as an overview of
existing literature into relevant topics, the software I have developed, and the re-
sults of using this project to performanalysis on a variety of tournament structures.

Acknowledgements

Much thanks is given to Ranald Clouston, who supervised this project through
the year.

1https://github.com/mikeplus64/journeyman
2https://mikeplus64.github.io/journeyman

3

https://github.com/mikeplus64/journeyman
https://mikeplus64.github.io/journeyman
https://github.com/mikeplus64/journeyman
https://mikeplus64.github.io/journeyman

Background andMotivation

The economics of sports and eSports tournaments are staggering; in 2021 nearly
$200bn USD was spent on sports betting [1] alone. At least $303m USD has been
allocated in prize pools for DOTA 2 tournaments since its release [2]. Quoting from
an article The Economist wrote in July 2020 about growth of eSports spurred on by
the COVID-19 pandemic [3]:

Take “League of Legends”, perhaps the biggest e-sport in theworld. Itwas
launched in 2009 by Riot Games, an American firm now owned by Tencent,
China’s biggest tech firm. It is a complex strategy game, in which teams of
fiveplayers command“heroes” inabattle todefeat eachother. Asmanypeo-
ple play it regularly as play tennis; at any one time, 8mpeoplemay be online.
It also supports a professional game that is, at least in terms of the number
of players earning a living from it, also larger than tennis. The final of the
League of Legends World Championship last year was watched live by 44m
people. By comparison the Super Bowl, America’s biggest live sporting event,
waswatched by roughly twice that.

Twelveprofessional leaguesnowspanall regionsof theglobeexceptAfrica,
with 120 franchised teams and perhaps 1,000 professional players. Whereas
tennis stars in theworld’s top 200 often struggle tomake a living, “League of
Legends” players in America are guaranteed a minimum salary of $75,000.
There, players are entitled to the same visas that other foreign athletes can
get. Theaveragesalary iscloser to$400,000, saysChrisGreeleyofRiotGames.
LeeSang-hyeok,aKoreanstar, knownbyhis tag“Faker”,maybethehighest-
paid sportsman in his country.

With this in mind, it is worth asking how it is that players are ranked and eval-
uated against each-other. That is: Are the tournaments reliable - are the results
repeatable? Are they fair? How could we determine this? Indeed, examples exist
of large real-world tournaments that were possibly unfair [4][5] or where players
perceived that there would be a benefit to purposefully losing (throwing) matches
[6]3 due to the structure of the tournament.

The initial motivation for this project was my experience in helping to run tour-
naments for the games Diabotical and Quake Champions through a website4 I built
for that purpose. Since its inception in 2020, 79 tournaments have been completed
through it. Frequently questions of fairness in tournaments would arise due to
some players seeming to have “unfairly” hard or easy tournament brackets. This
project then arises from a desire to be able to quantify the fairness of the different
tournament structures that were employed – if a software tool existed that could
aide in the design and evaluation of tournament structures (by, for instance, anal-
ysis and/or simulation), that could have been employed to determine what tour-
nament structures were appropriate. Instead, the logic that describes tournaments

3This example is quite poignant, including a scene where both teams in a match of an Olympic
badminton group stage endeavoured to lose against eachother. A total of 4 teamswere disqualified in
this incident. [7]

4https://kuachi.gg

4

https://kuachi.gg
https://kuachi.gg

on kuachi.gg are hard-coded into the system, andwhile some composition options
are supported, it is a fairly inconvenient process to add new ones.
Akeycontribution thisproject seeks tomake is to recommend tournament struc-

tures that are resistant to “false” seeding (initial ranking). If a tournament has a
number of rank inversions in its seeding, does that number of rank inversions re-
duce or increase after the tournament is ran? That is, to what extent does the tour-
nament really sort the players? This is a common problem with real-world tour-
naments as often the relative skill level of players is simply an unknown factor, and
so guesses must be made.
This project contributes a small set of primitives that can be used to describe ar-

bitrary tournaments, an Embedded Domain-Specific Language (eDSL) for tourna-
ment description that employs those primitives, an interpreter capable of running
and analysing tournament structures built using the eDSL. Additionally, discussion
of analysis of common tournament structures by the software library is included in
this thesis.

Scope and aims of this project
With this background in mind, these are the aims of the project:
1. Tocreate a computer language that enables theconvenientdescriptionof com-
mon tournament structures, and also to enable creation of new tournament
structures as compositions of existing ones.

2. To create an interpreter for this language that can evaluate tournament de-
scriptions; to be able to run the tournaments described by the language de-
fined in Goal 1.

3. To systematically evaluate the efficacy of different tournament structures in
termsof quantifiable properties such as fairness, length, repeat-match avoid-
ance, and so on.

I call the software library developed Journeyman.5

5A Journeyman is a term for a consistently high-achieving career sportsperson that is not at the
highest level of their sport.

5

Definitions

As an aide to readers, the followingglossary is provided. I specialise certain terms
tohaveexactlyone specificdefinition inorder to avoid confusionand limit the scope
of this thesis.
Tournament A schedule of Matches by which a set of Players are ranked in order

of most-skilled first to least-skilled last.
Player A participant in a Tournament.
Match A pairing of exactly two Players in a tournament that has an uncertain out-

come to be determined by a game of some sort.
Bracket A schedule of games in an elimination tournament, commonly expressed

as a binary-tree diagram of player matchups.
Single Elimination A kind of elimination tournament in which the loser of each

matchduring a round is eliminated. Each round successivelynarrows thefield
of remaining players until just one winning player remains. Also known as a
knockout or sudden-death tournament.

Double Elimination A kind of elimination tournament in which each player is al-
lowed to lose up to 1match before they are eliminated. Also known as a double
knockout tournament. The tournament is divided into two brackets; an “up-
per” or “winner’s” bracket, and a “lower” or “loser’s” bracket; the upper
bracket contains only players that have not lost a match up to that point, and
the lower bracket contains players who have lost amatch in the upper bracket
prior to that point.

Seeding A ranking of the players of a tournament before the tournament begins.
Seeding can have a significant impact on the outcome of elimination tourna-
ments; consider the worst-case seeding of a Single Elimination tournament
in which the two best players match against each-other immediately.
In a seeded tournament, Player 0 is the “highest” or “best” seed, denoting the
player with the highest skill. Player (n − 1) is the “lowest” or “worst” seed,
denoting the lowest skilled player.

Slaughter Seeding A method of seeding a tournament such that the initial match
for each player is themirror of that player; the best player shall play theworst,
the second best shall play the second-worst, and so on.

Round Robin Akindof tournamentwhere eachplayerplays eachotherplayer once.
Group Stage A kind of tournament where players are split into a fixed number of

groups, and a Round Robin tournament is played within each group. those
groups.

Stage Where a tournament is split into 2 ormore sub-tournaments that run in se-
quence, one after the other, those sub-tournaments are often coined stages.

Upset A match result is said to be an upset if the higher seeded player loses to the
lower seed. (Regardless of how close their true skill levels may be.)

6

Literature Review

Before proceeding to the design and implementation of this project, I will pro-
vide an overview of some of the relevant literature that informed how the project
proceeded andwhat gaps existed in knowledge that it could help narrow. I consider
literature across the topics of Domain-Specific Language design, tournament de-
sign, and tournament fairness. Each sub-section here denotes a particular paper
that was considered.

“Design Guidelines for Domain Specific Languages” Karsai et al.[8]
This paper provides a list of guidelines to follow for the design of DSLs. I followed

it as a rough guide used in the process of designing the Journeyman eDSL. The de-
sign guidelines are codified into a list of suggestions; here I respond to each.
1. “Identify language uses early” See Scope and aims of this project.
2. “Ask questions”

• “Who is going to model in the DSL?” Tournament designers who may
find the software useful.

• “Who is going to review themodels?” Tournament designers whomay
find the software useful.

• “When?” Prior to the design of a tournament, but when factors such as
time and resource constraints are available.

• “Who is using the models for which purpose?” Tournament designers
mayuse the eDSL tohelp identify andanalyse the efficacyof various tour-
nament structures, and apply those results; for myself to the real-world
use-case I identify in the section.

3. “Make your language consistent.” I apply an Algebra of Graphs-esque ap-
proach to the design of the eDSL in order to keep its semantics simple.

4. “Decide carefully whether to use graphical or textual realization”
A textual representation will be the primary format for this eDSL, as it is in-
tended tobe aprogramming librarywith the ability to describe arbitrary tour-
nament structures. That said, the software includes the ability to visually in-
terpret a tournament.

5. “Compose existing languages where possible”, and,
6. “Reuse existing languagedefinitions”Oneof thekey factors that decided the
choice of eDSL vs DSLwas the ability for an eDSL to leverage its host language
to the full extent. Indeed, it does become apparent that many tournament
structures can be expressed quite conveniently with Haskell’s list function-
ality alone.

7. “Reuse existing type systems” As will be seen in later sections, the type-
system is used effectively here to restrict certain kinds of tournament com-
position and to simplify the logic required to evaluate a given tournament.

7

“Algebraic graphs with class (functional pearl)” Mokhov[9]

Thispaper and theaccompanyingHaskell libraryalgebraic-graphs largely largely
inspired the design of the core Tournament data type that the Journeyman eDSLma-
nipulates. The key observation is that graphs can be described using two operators
Connect and Overlaywhich each have desirable properties.

In the Journeyman eDSL, the Overlay operator is reproduced to mean the inter-
leaving or parallel existence of two sub-tournaments, and can be intuited as an al-
gebraic sumoperator. The Connect operator is not reproduced, as it doesnot have an
intuitive analogue in tournament structures; instead, a Sequence operator connects
tournaments by running them one after the other, and can be viewed as an alge-
braic product operator. Type information is thenused to guarantee thatwe can turn
any arbitrary tournament, which can nest combinations of Overlay and Connect at
will, into a “flattened” stream of rounds. For more information, see Design.

“The structure, efficacy, and manipulation of Double Elimination tour-
naments” Stanton et al.[7]

This paper provides information about Double Elimination tournaments in par-
ticular. Several important theorems are provided for their design - in particular a
result about the optimal linking between the upper and lower brackets of a Double
Elimination tournament - as well as statistical analysis performed on the efficacy
of tournaments.

Statistical analysis is performed to compare the reliability of Single Elimination
tournaments to Double Elimination ones, where Double Elimination is shown to
be much more efficacious in allowing the most skilled player to win. Simulations
are performed using chosenmodels for the probabilities of playerswinning against
each other, rather than on real-world data.

Manipulation of Double Elimination tournaments is also considered, and an in-
teresting case study provided to demonstrate the need for tournaments that are
robust against manipulation: “in the 2012 Olympics, four of the top badminton
teamswere disqualified for trying to intentionally losematches, causing an uproar
and angering fans. While the tournament structure used there was not a DET, this
demonstrates that players really will exploit poor tournament design when pos-
sible.” The importance of seeding in the outcome of elimination tournaments is
noted as well. Several theorems are provided on the complexity of manipulation of
a tournament by players.

Double Elimination Link Functions are described in this paper: The Link Func-
tion is the algorithm that chooses where in the lower bracket a player from the up-
per bracket should go after a loss. The choice of Link Function is quite important
in order to avoid re-matching players who already faced each other in the upper
bracket as much as possible 6. Two operations, named Swap and Reverse, are de-
scribed in constructing a Link Function, and an optimal Link Function that avoids

6Avoiding rematches has intuitive benefits; players are able to gauge their skill against multiple
opponents, and thus so does the tournament.

8

rematches asmuch as possible can be constructed using ⌈log(R)⌉ Link or Swap op-
erations.

“DoubleEliminationTournaments: CountingandCalculating”Edwards[10]

This paper provides broad information about the construction of Double Elim-
ination tournaments. The efficacy of “unbalanced” Double Elimination tourna-
ments is considered in detail. A system for uniquely numbering Single Elimination
tournaments is also provided, with extension then to number Double Elimination
tournaments by the structure of the lower bracket as well as the linking function
used.

Statistical analysis is performed by using an assumed preference matrix, denot-
ing the pairwise probabilities of one team winning a game against another. Using
a preference matrix contrasts against methods used in “real” games to calculate
the probability of a player winning a particular match against another, such as the
Elo Rating System[11]; in Elo, all players are assumed to have an absolute quan-
tifiable skill level, that satisfies transitivity; if player A is more skilled than player
B, and player B is more skilled than player C, then A must be more skilled than
player C. A preference matrix approach allows for the fact that some players may
do particularly well or poorly against other players. It may be possible to calculate
a preference matrix from existing public data from existing games, by assigning
a secondary ranking to players by treating each possible pair as its own separate
game.

The larger Double Elimination tournament shown in this paper does not to have
a “balanced” lower bracket. Convention in modern Double Elimination tourna-
ments is that, to maximise fairness and minimise the number of rounds required,
one should alternate between roundswhere players are from the lower bracket play
against each other, andwhere “new”players are added in to the lower bracket from
a round in the upper bracket. This is shown in “The structure, efficacy, and ma-
nipulation of Double Elimination tournaments” [7].

“Simulating competitiveness and precision in a tournament structure:
a reaper tournament” Dinh et al.[12] and “Reaper Tournament System”
Pham et al.[13]

This pair of papers describes a novel tournament structure coined “Reaper tour-
naments”. [13] describes most of the results and [12] develops the knowledge of
theReaper tournament system further, and creates a similar (but new) tournament
structure called Reaper elimination.

The structure of a Reaper tournament is that it operates initially as an inverted
Single Elimination tournament, where only the losers of eachmatch advance along
the Single Elimination bracket. An algorithm is applied to successively select and
eliminate the worst player successively. Indeed, Reaper tournaments seem to be
analogous to common Selection Sort algorithms; and by only eliminating a single
player in each round, it is able to achieve 100% ranking precision - or at least that
no player shares the same result as another.

9

The number of matches required in a Reaper tournament is not given a general
formula in the system, nor the number of rounds, which is a significant weakness
to its adoption as a tournament structure in practice - tournaments need to hap-
pen usually within some known time constraints. Description of the Reaper tour-
nament system as a sorting network, though the Journeyman eDSL, may help to
elucidate its properties. For n = 8, the Reaper tournament requires m ∈ [15, 17]
matches compared tom = 14 for double elimination orm = 28 for a round-robin.

It is also shown that the stabilityprogression,measuringwhetherwinning a game
is more desirable than losing, is preserved in the Reaper tournament structure. It
is never a desirable outcome to lose a match in the Reaper tournament structure.

Additionally, two-stage tournament systems where a Group Stage precedes an
Elimination are considered [12]. The group stage has multiple groups of players in
each group, and a tournament structure such as round-robin (or Reaper), is con-
ducted within that group. Such structures are quite common in practice.

Various metrics are created to measure the efficacy of tournaments in practise
and in simulation. Thekeymetrics areENM,meaning“expectednumberofmatches”,
ARW, the “average rankof the tournamentwinner” (ideally, 1), andRankCor∈ [0, 1]
where a value of 0means the tournament had a completely random result with re-
spect to the player’s “true” skills/rankings, and a value of 1 means that the tour-
nament perfectly preserved those a priori rankings.

Theoretical experiments on 8 player tournaments are conducted that show the
excellent RankCor of the original Reaper tournament structure. Double Elimina-
tion stages are also shown to have quite good RankCor (at this size of tournament).
Real-world tournament data is used that demonstrates the robustness of Double
Elimination tournaments in terms of RankCor, with Reaper tournaments also per-
forming excellently, though doubling the number of matches required.

Description of the Reaper tournament structure algorithm

I reproduce inmy ownwords the algorithm for the Reaper tournament structure
here.

Information:

• Each player has a respect list of players who they have previously lost to. This
is updated every time a game occurs.

• The tournament is assumed to be n = 2k in size; there must be a power-of-2
number of players.

Steps:

1. Reaper selection: In Round 1, pairs of players are matched together, so that
every player is in a match. The losers in the round are then paired against
each other, and again, until a round where only a single player loses a match
(who lost all matches prior to this round), and they are eliminated from the
tournament. Let the winner of the final game in this step be the Reaper.

10

Thisbasicallydescribes an“inverted”SingleElimination tournament-where
to proceed to the next round, youmust lose the current round. The “winner”
(i.e., loser of all games) then of this inverted Single Elimination tournament
is the one who is actually eliminated from the tournament.

The question ofwhatmatching algorithm is used is left open by the authors of
the paper, but it is likely significant in determining the outcome of theReaper
selection stage.

2. Reaper candidates: A candidate list is created consisting of:

• If there are players who are not in a respect list, those players.

• Otherwise, the players who are in the respect list of the Reaper.

The size of the candidate list then determines the next step:

• If > 1, proceed to (3).

• If = 1, proceed to (4).

• Otherwise (= 0), the tournament ends.

3. Candidates match: The two best players play each other. Update the respect
lists accordingly and go back to step (2).

4. Reaper match: The single player in the candidates list plays the Reaper. The
loser here is eliminated and is ranked above the previously eliminated partic-
ipant, while the winner is set to be the new Reaper.

The expression of this structure in an eDSL is challenging, as the tournament
needs tobe able to“respond” to the results ofmatches inorder tomaintain a respect
list and candidates list.

Reaper Elimination

Afollow-upstructure isproposed in the secondpaper [13] thatdevelops theReaper
tournament structure to give it anupper boundon thenumber ofmatches required,
and a static tree structure. Thus, it is likely a tournament that could be expressed as
a sorting network. It is shown that the number of matches required isO(N log2N).

“Quantifying the unfairness of the 2018 FIFO World Cup qualification”
Csató[4] and “Risk of Collusion: Will Groups of 3 Ruin the FIFA World
Cup?” Guyon[5]

These papers look at real-world sports tournaments, namely the FIFA series of
soccer/football tournaments. As these are huge events with massive prize pools
that carrygreat prestige for participating teams, nations, andhosts, examinationof
these events for fairness criteria is important. These papers demonstrate how real-
world data can be used to examine and quantify fairness of tournament structures.

It is shown in [4] that the origin continent of a teamhadanout-sized effect on the
likelihood of a team in qualifying into the FIFA World Cup in 2018. It is found that

11

a fixed draw rather than a random draw for qualification would reduce unfairness.
Unfairness is measured by “ranking the teams according to their Elo, and sum-

ming the differences of qualifying probabilities that do not fall into line with this
ranking”.
In [5], the conditions required to aggravate the risk of collusion between teams is

examined. This can occur when two teams in a Group Stage are already guaranteed
entry into the proceeding stage, but the result of their match can adversely affect
whether or not another team in that group makes it through to the next stage or
not. Examples of collusion are examined in real-world games. Games such as soc-
cer where a draw is a possible outcome may be susceptible to colluding outcomes;
teams can agree in advance to draw against each other, and neither will lose face
nor prestige, while still possibly being able to gain the points required to proceed
on to the next stage of the tournament.

“Handling fairness issues in time-relaxed tournaments with availability
constraints” Van Bulck et al.[14]
Thispaper examines computational complexityof time-relaxed tournamentgame

scheduling. That is, the problem of scheduling games where there is not a tight
deadline to complete the games, but theremay be sporadic player and venue avail-
ability. This situation frequently occurs during “long format” group stage formats
which are ran over weeks or months, where the scheduling of each game is done
by each player participating in that game together. However, this is out of scope
to the research aims of this project. The fairness measures proposed by this paper
also concern scheduling, which is outside of the scope of this project.

“The impossibility of a perfect tournament” Placek[15]
This paper provides an important result that shows that their constructed fair-

ness and balance metrics trade off against one-another, and elimination tourna-
ments cannot be constructed that maximise both metrics. The author concludes
that a perfect tournament design cannot be made because of the inherent uncer-
tainty of outcomes and player seeding; indeed, if perfect rankingwas already avail-
able at the outset, there would be little point to running a tournament in the first
place. The author also provides discussion on the tournament outcomes and spec-
tator interest; where playerswho play optimally are perceived to be dull or unimag-
inative.
The fairness metric here is that the sum of the ranks of winners of each match

must bemaximised across the whole tournament. This is an interesting definition
that intuitivelyworks quitewellwhen the tournament structure is alsominimising
the number of matches required - one could construct a degenerate-case tourna-
ment structure thatmaximises this sum, by, for example,matching 2weak players
repeatedlyuntil the sumgeneratedby thewinnersof thosematchesmustbegreater
than the sum generated by the winners of the other matches in the tournament.
The balancemetric here is to minimise the difference in ranks between players

across all matches. By doing this, you create tournament structures that provide as

12

more information about players who are closelymatched. In the single elimination
case, it is clear that maximising balance minimises fairness. Maximising balance
can have the effect of increasing spectator interest, as closer games are assumed to
be more exciting to watch than “blow-out” games, which I can validate from my
own anecdotal experience.

“A new knockout tournament seeding method and its axiomatic justifi-
cation” Karpov[16]
This paper demonstrates the determining effect of seeding to Single Elimination

tournament outcomes, and proposes an “equal gap” seeding method contrary to
the traditional “slaughter seeding” method, that, under a deterministic domain
assumption, satisfies the fairness, competitive integrity, and equal rank difference
axioms that are introduced. Here, determinism refers to assuming that given any
match, the player with the highest seed/skill shall win.
Applicability of the proposed seeding method outside of the domain assumption

is an open question, and may be a useful application of the Journeyman library to
examine its effects.

“The efficacy of tournament designs” Sziklai et al.[17]
Efficacy of tournaments is analysed in terms of ranking inversions exhibited at

the end of the tournament. A valuable result is that triple-elimination does not
greatly improve the efficacy of ranking players compared to Double Elimination,
especially when accounting for the extra matches required.
Swiss-style tournaments are shown to be very effective at ranking players and

generally exhibit fewer inversions than any other format considered, for the same
number ofmatches - although Swiss-style tournaments use amatching algorithm
each round to determine who plays who, they are ran to a fixed number of rounds,
so they can be engineered to desired level of accuracy and matches. Swiss-style
tournamentsare showntobe superior to single/double/triple eliminationandgroup
stage tournaments. The choice of matching algorithm here likely has the greatest
effect on result.

13

Design

In this chapter I will explain the design of the software artefact developed. To
understand the final design thatwas implemented, it’s firstworth examiningwhat
information lead to it.

Analogies between sorting networks and tournaments

A key observation of made at the outset of this project is that there is an analogy
between sorting networks and many tournament structures. Here, a sorting net-
work refers to a fixed schedule or “network” of comparisons between a fixed set of
objects. Each comparison has a fixed coordinate orwire in the network, and results
in either the objects staying in the same position as they were (if they were already
in order with respect to each-other), or they exchange places if not.

I call a sorting network “partial” if it does not determine a complete ordering
among players; for instance if out of 16 elements it determines the greatest 8 in
order, but leaves the remaining 8 in two buckets of 4 items where only the order of
the buckets is known.

P0

P0 P1

P0 P3 P1 P2

P0 P7 P3 P4 P1 P6 P2 P5

(a) Progression of a Single Elimination
tournament under Slaughter Seeding

(b) Progression of the same Single
Elimination tournament, expressed as a
sorting network

ASingleElimination tournamenthasapartial sortingnetworkconstruction. This
is because at each round we can draw matches between the winners of the previ-
ous round only; that is, those players that now occupy the “high” position of the
sorting network, after a single step of the network. At the same time, the losers of
each round are simply not given any further comparisons (i.e., matches) from the
point that theywere eliminated, and so remain ranked at whatever point theywere
eliminated.

Similarly,wecanalso construct aDouble-Elimination tournamentbysortingnet-
work, by creatingmatches between those players that lost infirst roundof the“up-
per” bracket, and then alternating rounds that either accept new losers from the
previous upper bracket round into new matches in the lower bracket, or that play
off players who are in the lower bracket.

Swiss-style tournaments may fall under sorting networks if a pairing algorithm
is chosen that does not enforce a no-rematch rule. Indeed, the sorting algorithm
titled sorting algorithm I Can’t Believe It Can Sort [18], a mistaken version of inser-

14

tion or bubble sort, can be viewed as a Swiss-style tournament with a matching
algorithm that allows rematches, ran toΘ(n2) rounds for n players; players that are
closely ranked are repeatedly matched/compared. With the result of Sziklai et al.
in mind, this sorting network with comically poor characteristics may indeed be
an extremely effective tournament structure – if a quadratic number of rounds is
permissible.

Figure 1: Thefirst 8 roundsof an ICan’tBelieve It CanSort tournament structure, visualised in the
Journeyman-UI tool.

I call tournaments that have a direct sorting network analogy Sorting Network
Tournaments (SNT). SNTdoesnot encapsulate all tournaments that intuitivelyhave
a static structure. Namely, they cannot express round-robin tournaments. In a
round-robin tournament, every player has exactly one match against every other
player. But after a single round in a SNT, which players occupy what slots of the
network are unknowable; hence we cannot proceed after a round of a SNT to pair
“every other” player without the possibility of a rematch. Since in a SNT the play-
ers must exchange position upon a player from a numerically greater slot beats a
player from a numerically lesser slot, a SNT Round-Robin requires knowledge of
each prior round to avoid rematching.
We canwork around this by defining another category of tournaments that intu-

itively have a static structure (given some n number of players), which I call Static
Non-Sorting Network Tournaments (SNSNT), in which swap-exchange matches
are removed, but a sortingmechanism is available based on points accumulated by
players eachmatch over a fixed number of rounds. A round-robin is such a tourna-
ment, sincewe can trivially construct a full round-robin schedule in advance using
known algorithms such as the Circle Method.

15

A Type for Tournaments

The core type of the eDSL is described here. The primary feature of this type is
its simplicity and ease of analysis. Tournaments in this library depend on two key
operators inspired by the algebraic-graphs package, which are used tomanipulate
a small set of primitive tournament types. Themost basic primitive chosen is Match
:: (Int, Int) -> Tournament, which simply requests that match specified by the
pair of sorting network slots. To justify the design of the core eDSL type, we shall
build it from scratch:

Firstly, we need a way to, at a minimum, have two matches run at once. We
can then generalise this operatorto allow any two tournaments to run in lock-step.
Thus, thefirst operator defined is named Overlay, which overlays two tournaments
together, running them in parallel. The (+++) operator provides an infix short-
hand for this operator. For instance, thefirst round of a 4-player Single Elimination
tournament can be encoded with just (+++) and Match: (Match 0 3) +++ (Match 1
2), or 8-player: (Match 0 7) +++ (Match 1 6) +++ (Match 2 5) +++ (Match 3 4).
Note that unlike in a binary tree representation, the order of matches with respect
to each-other has no effect onwhat tournament is described. To illustrate this, re-
call Figure 1(a); how would the expected outcome change if at the initial stage, the
match (0, 7)was swapped with (2, 5)?

The (+++) operator satisfies these algebraic properties:

1. Transitivity: (x +++ y) ≡ (y +++ x)

2. Associativity: (x +++ (y +++ z)) ≡ ((y +++ z) +++ x)

3. Identity: (Empty +++ x) ≡ (x +++ Empty) ≡ x

Secondly, we need a way to, at minimum, run two matches one after the other.
We can then generalise this operator to allow any two tournaments to run in se-
quence. Thus, the second operator defined is Sequence, which connects two tour-
naments together by running them one after the other. It is given an infix short-
hand (***). It cannot satisfy transitivity, it does satisfy associativity. It does also
not satisfy Identity; the reason for this is that creating empty roundsmay be useful
in the context of certain kinds of interleaving two tournaments together, such as
allowing one tournament to run in even rounds, and another to run in odd ones.
This could be achieved by sequencing an Empty round to every other round in the
two input tournaments, and then overlaying them both – but only if the Identity
property is not granted to Sequence.

Wenowhavea simple tournament typedata Tournament0 = Overlay Tournament0
Tournament0 | Sequence Tournament0 Tournament0 | Match Int Int | Emptywhich
I claim is isomorphic to SNT, under an interpretation of Match always causing a
swap-exchange to occur if there was an upset result. This structure does present
some challenges in being able to generate a schedule ofmatches from it; since there
can be an arbitrary, possibly unbalanced, mix of Overlay and Sequences; consider
the following tournament:

unbalancedT0 = ((Match 0 1) +++ (Match 2 3))
+++ ((Match 4 5) *** (Match 0 1))

16

+++

+++ ***

Match 0 1 Match 2 3 Match 4 5 Match 0 1

Figure 2: An unbalanced combination of sequences and overlays in a tournament

How to interpret this may not be immediately obvious. Obviously, on the sec-
ond branch, match (4, 5) and (0, 1) are intended to run one after the other. But what
does it mean to overlay on this structure? The interpretation taken by Journey-
man is logically to insert an equivalent number of “empty sequences” that balance
the tournament with the side that has more sequences than the other. That is, we
aligning the two sides of an overlay operation.

+++

+++

Empty

Match 0 1 Match 2 3

Match 4 5 Match 0 1

(a) Step 1

+++

+++

Match 0 1

Match 0 1 Match 4 5

Match 2 3

(b) Step 2

A tournament that is expressed as a sequence of overlays of matches is said to be
in Tournament Round Normal Form (TRNF); it can be thought of as a sequence of
rounds of a tournament or sorting network, and it is now trivial to traverse this to
create a schedule of rounds, ofmatches. Tournaments that satisfy this property are
much easier to interpret than tournaments that don’t.
By encoding ameasure of depth (think, number of rounds) of a tournament into

its type, we can greatly simplify functions that interpret tournaments; so long as
we can transform any tournament into TRNF,we only need to express a function in
terms of a single round of a tournament to be able to lift it to work on arbitrarily-
deep tournaments.

17

Consider if we simply add a type-level natural number to the Tournament type:
data Tournament :: Nat → Type where

-- | Connect two tournaments by having them occur
-- simultaneously; analogous to the "Overlay" operator
-- from algebraic -graphs
Overlay :: Tournament a → Tournament a → Tournament a
-- | Connect two tournaments by running one after the
-- other. Note the change in depth
Sequence :: Tournament a → Tournament b → Tournament (a + b)
-- | Request a single match to be played
One :: Match → Tournament 1
-- | Do nothing
Empty :: Tournament t

-- | Play the two players occupying the /slots/ specified by
-- this match together
data Match = Match Int Int

This isnowgettingquite close to thefinal typeusedby the JourneymaneDSL.Un-
der this design, so long as we have a function that can lift a function from rounds
to sequences of rounds as above, and a function that can transform an arbitrarily-
deep/unbalanced tournament into TRNF, then interpreters over tournaments ef-
fectively only need to be concerned with singular rounds. As it turns out, adding
this typeparameterguarantees thatour functiontoTRNF :: Tournament a -> NonEmptyList
(Tournament 1) does indeed only return single rounds.
Sincewe only care about distinguishing tournaments of depth> 1 between tour-

naments of depth≤ 1, we can swapout type-level arithmetic for amore lossy repre-
sentation ofN: data Depth = TOne | TMany, and parameterise the tournament over
that instead.
We also need an operation to allow a tournament to be parameterised over the

number of players available. Wewould also like to be able tomanipulate that player
count, and moreover, to have a convenient mechanism for dividing tournaments
along the “player” axis, to, for instance, represent a group stage round robin for-
mat.

ByPlayerCount :: (Int -> Tournament t) -> Tournament t
ByFocus :: (PlayerCount -> [Focus]) -> Tournament t

-- | A focus represents a slice over the current set of
-- players. Tournament interpreters must use the current
-- focus as an offset for matches generated within.
data Focus = Focus { start , length :: Int }

We also lack a way to tell a tournament interpreter what sorting strategy to use;
should every upset match result in a swap-exchange? Or should no swaps occur,
and only a final tally of points be used to finalise player standings? Additionally,
we can not yet support tournaments that require past match results to decide what

18

to do (e.g., conventional sorting algorithms). This motivates the final three con-
structors:

BySwaps :: Tournament t -> Tournament t
ByPointAward :: Tournament t -> Tournament t
ByStandings :: (Standings -> Tournament t) -> Tournament t

For anAPI-centric viewof the Tournament type, see the Tourney.Algebra.Unified7
module. The main conceptual difference is that by adding a ByStandings construc-
tor, tournaments can no longer necessarily be inspected completely in advance;
theymayhavearbitrarilymanyrounds, conditional oncertainmatch results. There-
fore, an abstraction is built that allows tournaments to be inspected to their first
“pure” subset – that is, the first (in terms of Sequence order) sub-tournament be-
fore a call to ByStandings.
Thedesignof an abstract streaming type to support this follows fromother open-

source streaming libraries for Haskell, namely, streaming. The streams defined in
Journeyman however support O(1) concatenation and, as above, have the key dif-
ference that they do not necessarily require any effectful code to be ran to be able to
inspect an element of the stream; a stream can purely yield values (i.e., matches, or
rounds) that can also be popped off purely. Additionally, operators are defined for
aligning two streams of values together, which is how the operation in Figure 3(a)
is implemented.
With this representation, compilationof tournaments canultimately reduces them

to a single stream of a very small set of commands, which become trivial to inter-
pret: data Op = BEGIN_ROUND | END_ROUND | MATCH Match | PERFORM_SORTING Focus
SortMethod. Thekeydetail is that an interpretermustnot proceedpast an END_ROUND
or a PERFORM_SORTING until all the relevant matches have been completed8.
Another key implementation detail is that the Match constructor is guaranteed to

always refer to different slots in the sortingnetwork, and that thefirst slot is always
less than (in terms of index) the second. This greatly simplifies some logic such as
keeping a sparse matrix of match results arranged (Slot, Slot) → Maybe Result;
since the values are always ordered and unequal, only an upper triangle of such a
matrix ever needs to be considered.

7https://mikeplus64.github.io/journeyman/Tourney-Algebra-Unified.html
8For END_ROUND, all matches are relevant. For PERFORM_SORTING, only thosematches under the Focus

specified are.

19

https://mikeplus64.github.io/journeyman/Tourney-Algebra-Unified.html
https://hackage.haskell.org/package/streaming
https://mikeplus64.github.io/journeyman/Tourney-Algebra-Unified.html

Final Definitions
I reproduce the final definition below:

data Tournament :: Depth -> Type where
One :: Match -> Tournament TOne
Empty :: Tournament t
-- | Modify a tournament 's focus; that is, the slice of slots of the
-- sorting network that it concerns
SetFocus :: (Focus -> [Focus]) -> Tournament t -> Tournament (TMod t)
-- | Overlay two tournaments , to describe running two sub-tournaments
-- in parallel. The depth of the tournaments must be the same
Overlay :: Tournament a -> Tournament a -> Tournament a
-- | Sequence two tournaments one after the other. The resulting
-- tournament has a depth 'TMany' which restricts what functions
-- are able to manipulate it.
Sequence :: (KnownDepth a, KnownDepth b)

=> Tournament a -> Tournament b -> Tournament TMany
-- | Sort the inner tournament by some sorting method
Sort :: SortMethod -> Tournament t -> Tournament t
-- | Depend on the player count to produce an inner tournament
ByPlayerCount :: (PlayerCount -> Tournament t) -> Tournament t
-- | Depend on the current standings , at the outset of the current round, to
-- run the tournament.
ByStandings :: (Standings -> Tournament t) -> Tournament t
-- | Lift a single round of a tournament into having a depth 'TMany'
LiftTOne :: Tournament TOne -> Tournament TMany
-- | Lift a modified round of a tournament into having a depth 'TMany'
LiftTMod :: KnownDepth t => Tournament (TMod t) -> Tournament TMany

-- | The depth of a tournament. Since we only care about distinguishing single
-- rounds from sequences of rounds, that is the only information stored here.
data Depth = TOne | TMany | TMod Depth

-- | Reflect a type-level 'Depth' into a term-level value.
class Typeable d => KnownDepth (d :: Depth) where

depthVal :: proxy d -> Depth

instance KnownDepth d => KnownDepth ('TMod d) where
depthVal _ = depthVal (Proxy :: Proxy d)

instance KnownDepth 'TOne where
depthVal _ = TOne

instance KnownDepth 'TMany where
depthVal _ = TMany

Since there are numerous types in the sorting network representation that are
ultimately just Int, I introduce some newtype definitions to prevent the accidentally
mixing of, for instance, a sorting network slot, and a player. These are named Slot,
Player, and RoundNo. For convenience, each has the full breadth of Num and Integral
operations available that Int has.

20

The Journeyman eDSL: An accumulating continuation over Tournament

The final eDSL is defined as a continuation-based accumulation monad over the
original algebraic Tournament type. Since there are twomainoperations formerging
tournaments together (overlays and sequences), the builder is parameterised by
what depth it is at, which is used to provide the default merge operation at that
depth. That is, a builder of just matches within a round is a Round ~ Builder TOne;
a builder of rounds then is a Steps ~ Builder TMany.
Thekeyconveniencegainedhere is tobeable to syntactically invert theByPlayerCount

and ByStandings constructors; thus:
-- | Retrieve the current player count
getPlayerCount :: Merge t => Builder t () PlayerCount

-- | Retrieve the current standings
--
-- Warning: this operation will have the effect of segmenting
-- the tournament into two sections , as a tournament runner cannot
-- continue past this point without first having the standings.
getStandings :: Merge t => Builder t () Standings

As the full API largely is a consequence of the primitives outlined above, theywill
not be reproduced here. For API-centric documentation of the Journeyman eDSL,
see the online documentation9. Most functions here simply add something to the
current Tournament accumulation, bywhatevermerging strategy (overlaying or se-
quencing) is most appropriate.

A virtual machine for Tournaments
To actually run a tournament, a virtual-machine, coined Tournament Virtual

Machine (TVM), is constructed. The TVM connects a Tournament compiler, which
has been described already, and an interpreter over that small set of tournament
“opcodes”.
The TVM is what powers the Journeyman-UI which has provided screenshots

throughout this thesis, and is capable of evaluating tournaments, including dis-
playing their pure subset ahead of actually arriving at those sections, as well as ac-
tually “peeking” into the future of an impure tournament (by supplying it with
mock standings).
The TVM also has simulation capability. This is a fairly simple combination of

the main TVM loop and a function that, given a match, creates or retrieves its re-
sult somehow. Using this, I implement a tournament interpreter for evaluating
tournaments by an initial Elo distribution of players.
The key API relevant here, provided by the core VMmodule Tourney.VM, is:

9https://mikeplus64.github.io/journeyman/Tourney-Algebra-Builder.html

21

https://mikeplus64.github.io/journeyman/Tourney-Algebra-Builder.html
https://mikeplus64.github.io/journeyman/Tourney-Algebra-Builder.html

-- | Create a 'VM' from a tournament and a fixed player count.
setup :: Tournament t -> PlayerCount -> IO VM

-- | Get a history of standings updates , by round , from a VM.
getStandingsHistory :: VM -> IO (MapByRound Standings)

-- | Run a VM to completion , using the input Elo distribution
-- to compute the win probabilities of each player per match.
-- A final Elo distribution is returned which reflects changes
-- in Elo that occured throughout the tournament.
simulateByEloDistribution :: Vector Float -> VM -> IO (Vector Float)

Tournament Interaction and Display
In order to inspect and interact with tournaments, a terminal-based UI is built.

It enables the display and running of tournaments, and allows for inspection of the
core “Virtual Machine” that compiles and interprets tournaments into a stream of
commands, such as to easily identify the number of rounds/true depth of a tour-
nament, and its parallelisation (if any). Some screenshots of this tool have already
been included in this thesis.

22

Demonstration of the Journeyman eDSL

We shall now tour some tournament structure definitions I have created that use
the Journeyman eDSL.

Round Robin and Group Stage Round Robins
The CircleMethod for round-robin scheduling is used here. The key point to note

here is the position of the points function, which requests sorting by point awards
for the matches within.

roundRobin :: Steps () ()
roundRobin = points do

count <- getPlayerCount
let (!midpoint , !r) = count `quotRem ` 2
let !n = count + r
mapM_

(round_ . map match)
[foldAround midpoint (map Slot (0 : ((n - i) ..< n)

++ (1 ..< (n - i))))
| i <- [0 .. n - 2]
]

More interestingly, we can use the SetFocus-based combinator divideInto to run
multiple parallel round-robin tournaments.
groupRoundRobin :: Int -> Steps () ()
groupRoundRobin numGroups = divideInto numGroups roundRobin

23

Insertion Sort, and I Can’t Believe It Can Sort
Three variations are provided here. The “naiive” variant of insertion sort here

follows the folk imperative definition of the insertion sort algorithm; but this ap-
proach does not take advantage of the parallelisation available in a sorting network.
While it should be possible for the Journeyman tool to simplify the graph of a tour-
nament through an analysis of match dependencies, that is not within the scope of
work undertaken in this project.
A parallelised sorting network implementation of insertion sort is thus also pro-

vided. Finally, the I Can’t Believe It Can Sort algorithm is provided. Note that as ex-
pressed, the I Can’t Believe It Can Sort algorithm cannot be parallelised; everymatch
except for the initial one has a dependency on the prior match’s result. Possibly,
we can improve this by creating a fully saturated network that simply alternates
between matching the odd-adjacent and even-adjacent slots, but that idea is not
pursued here.

Figure 3: Insertion sort of 8 players represented in Journeyman-UI.

insertionSortNaiive :: Steps () ()
insertionSortNaiive = do

n <- getPlayerCount
i <- list (0 ..< Slot n)
j <- list (i ..> 0)
swaps (round_ (match (Match j (j - 1))))

insertionSortNetwork :: Steps () ()
insertionSortNetwork = do

n <- Slot <$> getPlayerCount
i <- list ([0 .. n - 2] ++ reverse [0 .. n - 3])
swaps . round_ . asRound $ do

let (m, r) = i `divMod` 2
j <- list [0 .. m]
match (Match (j * 2 + r) (j * 2 + 1 + r))

iCan'tBelieveItCanSort :: Steps () ()
iCan'tBelieveItCanSort = do

n <- getPlayerCount
i <- list (0 ..< Slot n)
j <- list (0 ..< Slot n)
when (i /= j) do

round_ $ swaps $ match (Match i j)

24

Single Elimination
Single Elimination tournaments turnout to be quite easy to represent in Journey-

man, especially when compared to traditional binary-tree approaches, where the
exact order of nodes/leaves has a determining effect on outcomes. The key obser-
vation is that for the first round, with the simple arrangement of players frommost
skilled to least skilled, we can use list operations to split that list into two and fold
the two sides together; thus making the most skilled player meet the least skilled,
and the second-most skilled to the second-least skilled, and so on, until the two
players at the middle level meet. Since this operation is quite common in tourna-
ment construction, it is given the name foldAroundMidpoint.
singleElimination :: Steps () ()
singleElimination = do

count <- getPlayerCount
let depth = log2 (2^ceil (log2 count))
d <- list [depth , depth -1 .. 1]
swaps (round_ (foldAroundMidpoint [0 .. 2^d - 1]))

Note that this tournament does output bye matches between non-existent slots
if the player count is not a power of 2. Thesematches are treated as automatic wins
for the valid player, which is a necessary common practice for elimination tourna-
ments that have a binary-tree structure.

25

Double Elimination

Figure 4: An example Double-Elimination bracket hosted on kuachi.gg [19]

For Double Elimination it is worth first considering how an analogous sorting
network can be constructed. Obviously, the upper bracket can proceed identically
to a single elimination tournament, so we can definitely express it as some overlay
operation like singleElimination +++ lowerBracket. To elucidate what structure is
appropriate, I diagram the structure required for an 8-player Double Elimination
sorting network:

Figure 5: For contrast, the sameDouble Elimination bracket expressed as a sorting network.

I use the result provided by [7] to create a linking function.
-- A direct implementation of Double Elimination tournaments.
--
-- The approach here is to:
-- 1. Construct a single elimination upper bracket
-- 2. Create an initial lower bracket round, from the lowers of the first round of
-- the single elimination bracket
-- 3. For each other upper bracket round:
-- 3.1. Create a lower bracket round that accepts the losers from that round
-- 3.2. Create a lower bracket round that plays off only LB players against
-- eachother.
--
-- Since we only depend on the rounds generated in the upper bracket, we can
-- parameterise that; so our "doubleElimination" function is generalisable to be
-- able to add an extra loser's bracket to _any_ tournament , although it is

26

-- likely to have strange results when given tournaments that are not in the
-- same shape as single-elimination.
--
-- Thus we can use this to create quadruple elimination brackets , but not
-- triple.
doubleElimination :: Steps () ()
doubleElimination = addLosersBracket singleElimination

addLosersBracket :: Steps () () -> Steps () ()
addLosersBracket original = do

Right (ub1 :< ubs) <- inspect (ByRound Flat) original
let lowerRound1 = foldAroundMidpoint (ub1 ^.. each . likelyLoser)
swaps (round_ ub1)
swaps (round_ lowerRound1)
evaluatingStateT (lowerRound1 ^.. each . likelyWinner) do

(i, upper) <- lift (list (V.indexed ubs))
lastWinners <- get
let shuffledLosers = linkFun i (upper ^.. each . likelyLoser)
-- Accept new losing players from the upper bracket
let acceptRound = zipWith Match lastWinners shuffledLosers
-- Then perform a round of just lower bracket players being eliminated
-- I.e., match up the winners of the round_ we just wrote
let losersRound = foldAroundMidpoint (acceptRound ^.. each . likelyWinner)
-- Finally, add these rounds, and store the winning players in losersRound
-- for the next iteration
round_ do

swaps (toRound upper)
swaps (toRound acceptRound)

round_ (swaps (toRound losersRound))
put (losersRound ^.. each . likelyWinner)

linkFun :: Int -> [a] -> [a]
linkFun size = foldr (.) id (replicate size linkFunSwap)

linkFunSwap :: [a] -> [a]
linkFunSwap l = drop h l ++ take h l

where
h = length l `div` 2

27

Future work and limitations

There is little way to verify that the tournament structure generated is the one
that is actually intended, other than to view it in the Journeyman-UI tool. Addi-
tionally, analysis is currently limited; the UI tool will tell you how many rounds a
tournament has, but that is the extent that the information goes.
The original aims of statistical analysis of arbitrary tournaments has not been

met. While Journeyman does have the facility to do simulations by an Elo rating
distribution, the work of collating results from such simulations has not been un-
dertaken yet. Concretely, the future work to complete this aspect of the project
would be:
1. Run the existing Elo-driven simulator repeatedly for a particular tournament
structure.

2. Taking into account changes in Elo that happened throughout the course of
the tournament, tally the number of inversions over many runs. It may also
be interesting to compare the results when assuming a fixed Elo (i.e., abso-
lute certainty over players’ relative skills) compared to allowing for the self-
correction mechanism of Elo to occur within a simulation.

3. Do the same for other tournament structures, with the same initial Elo distri-
bution, and compare results.

Unfortunately the related aim to compare common tournament structures with
existing sorting algorithms is not completely met; it has proved to be too much
work for me to complete over the 2 semesters. That said, the process for doing
so would be identical to the above – which is to say that it is a tantalisingly small
amount of remaining work.
Additionally, there are undoubtedly bugs in the implementation I have created. A

more rigorous testing regime from the start may have been useful here, but due to
the design of the eDSL being an invention created for under this project, it was not
clear what the correct semantics should be to be tested for in the first place.

28

References

[1] Topic: Sports betting worldwide, [Online; accessed 19. Nov. 2023], Nov. 2023.
[Online].Available:https://www.statista.com/topics/1740/sports-betting.

[2] Biggest eSports ever games by tournament prize pool 2023, [Online; accessed 19.
Nov. 2023],Nov. 2023. [Online].Available:https://www.statista.com/statistics/
532840/share-esports-prize-pool-global-by-game.

[3] Thepandemic has accelerated the growth of e-sports, [Online; accessed 19. Nov.
2023],Nov. 2023. [Online].Available:https://web.archive.org/web/20230727061236/
https://www.economist.com/international/2020/06/27/the-pandemic-has-
accelerated-the-growth-of-e-sports.

[4] L. Csató, “Quantifying the unfairness of the 2018 fifa world cup qualifica-
tion,” International Journal of Sports Science&Coaching, vol. 18, no. 1, pp. 183–
196, Apr. 2022, ISSN: 2048-397X. DOI: 10.1177/17479541211073455. [Online].
Available: http://dx.doi.org/10.1177/17479541211073455.

[5] J. Guyon, “Risk of collusion:Will groups of 3 ruin the fifa world cup?” Journal
of Sports Analytics, vol. 6, no. 4, pp. 259–279, Jan. 2021, ISSN: 2215-0218. DOI:
10.3233/jsa-200414. [Online]. Available: http://dx.doi.org/10.3233/JSA-
200414.

[6] P. Walker and T. Branigan, “Badminton’s world governing body apologises
after players are disqualified,” the Guardian, Dec. 2012. [Online]. Available:
https : / / www . theguardian . com / sport / 2012 / aug / 01 / badminton - body -
apologises-players-disqualified.

[7] I. Stanton and V. V. Williams, “The structure, efficacy, and manipulation of
double-elimination tournaments,” Journal of Quantitative Analysis in Sports,
vol. 0, no. 0, pp. 1–17, Jan. 2013, ISSN: 2194-6388. DOI: 10.1515/jqas-2012-
0055. [Online]. Available: http://dx.doi.org/10.1515/jqas-2012-0055.

[8] G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe,M. Schindler, and S. Völkel,De-
signguidelines for domain specific languages, 2014. DOI: 10.48550/ARXIV.1409.
2378. [Online]. Available: https://arxiv.org/abs/1409.2378.

[9] A. Mokhov, “Algebraic graphs with class (functional pearl),” SIGPLAN Not.,
vol. 52, no. 10, pp. 2–13, Sep. 2017, ISSN: 0362-1340. DOI: 10.1145/3156695.
3122956.

[10] C. T. Edwards, “Double-elimination tournaments: Counting and calculat-
ing,”TheAmericanStatistician, vol. 50, no. 1, pp. 27–33, Feb. 1996, ISSN: 1537-
2731. DOI: 10.1080/00031305.1996.10473538. [Online]. Available: http://dx.
doi.org/10.1080/00031305.1996.10473538.

[11] Elo Rating System - Chess Terms, [Online; accessed 19. Nov. 2023], Nov. 2023.
[Online]. Available: https://www.chess.com/terms/elo-rating-chess.

[12] A. V. N. Dinh, N. P. H. Bao, M. N. A. Khalid, and H. Iida, “Simulating com-
petitiveness and precision in a tournament structure: A reaper tournament
system,” International Journal of Information Technology, vol. 12, no. 1, pp. 1–
18, Nov. 2019, ISSN: 2511-2112. DOI: 10.1007/s41870-019-00397-5. [Online].
Available: http://dx.doi.org/10.1007/s41870-019-00397-5.

[13] N. Pham, H. Bao, S. Xiong, and H. Iida, “Reaper tournament system,” in Jun.
2017, pp. 16–33, ISBN: 978-3-319-73061-5. DOI: 10.1007/978-3-319-73062-
2_2.

29

https://www.statista.com/topics/1740/sports-betting
https://www.statista.com/statistics/532840/share-esports-prize-pool-global-by-game
https://www.statista.com/statistics/532840/share-esports-prize-pool-global-by-game
https://web.archive.org/web/20230727061236/https://www.economist.com/international/2020/06/27/the-pandemic-has-accelerated-the-growth-of-e-sports
https://web.archive.org/web/20230727061236/https://www.economist.com/international/2020/06/27/the-pandemic-has-accelerated-the-growth-of-e-sports
https://web.archive.org/web/20230727061236/https://www.economist.com/international/2020/06/27/the-pandemic-has-accelerated-the-growth-of-e-sports
https://doi.org/10.1177/17479541211073455
http://dx.doi.org/10.1177/17479541211073455
https://doi.org/10.3233/jsa-200414
http://dx.doi.org/10.3233/JSA-200414
http://dx.doi.org/10.3233/JSA-200414
https://www.theguardian.com/sport/2012/aug/01/badminton-body-apologises-players-disqualified
https://www.theguardian.com/sport/2012/aug/01/badminton-body-apologises-players-disqualified
https://doi.org/10.1515/jqas-2012-0055
https://doi.org/10.1515/jqas-2012-0055
http://dx.doi.org/10.1515/jqas-2012-0055
https://doi.org/10.48550/ARXIV.1409.2378
https://doi.org/10.48550/ARXIV.1409.2378
https://arxiv.org/abs/1409.2378
https://doi.org/10.1145/3156695.3122956
https://doi.org/10.1145/3156695.3122956
https://doi.org/10.1080/00031305.1996.10473538
http://dx.doi.org/10.1080/00031305.1996.10473538
http://dx.doi.org/10.1080/00031305.1996.10473538
https://www.chess.com/terms/elo-rating-chess
https://doi.org/10.1007/s41870-019-00397-5
http://dx.doi.org/10.1007/s41870-019-00397-5
https://doi.org/10.1007/978-3-319-73062-2_2
https://doi.org/10.1007/978-3-319-73062-2_2

[14] D.VanBulckandD.Goossens,“Handling fairness issues in time-relaxed tour-
namentswithavailability constraints,”Computers&OperationsResearch, vol. 115,
p. 104856, Mar. 2020, ISSN: 0305-0548. DOI: 10.1016/j.cor.2019.104856.
[Online]. Available: http://dx.doi.org/10.1016/j.cor.2019.104856.

[15] P.C. Placek,“The impossibility of aperfect tournament,”EntertainmentCom-
puting, vol. 45, p. 100540,Mar. 2023, ISSN: 1875-9521.DOI:10.1016/j.entcom.
2022.100540. [Online]. Available: http://dx.doi.org/10.1016/j.entcom.
2022.100540.

[16] A. Karpov, “A new knockout tournament seeding method and its axiomatic
justification,” Operations Research Letters, vol. 44, no. 6, pp. 706–711, Nov.
2016, ISSN: 0167-6377. DOI: 10.1016/j.orl.2016.09.003. [Online]. Available:
http://dx.doi.org/10.1016/j.orl.2016.09.003.

[17] B. R. Sziklai, P. Biró, and L. Csató, “The efficacy of tournament designs,”
Computers & Operations Research, vol. 144, p. 105821, Aug. 2022, ISSN: 0305-
0548. DOI: 10.1016/j.cor.2022.105821. [Online]. Available: http://dx.doi.
org/10.1016/j.cor.2022.105821.

[18] S. P. Y. Fung, Is this the simplest (and most surprising) sorting algorithm ever?
2021. DOI: 10.48550/ARXIV.2110.01111. [Online]. Available: https://arxiv.
org/abs/2110.01111.

[19] AQL5 - Division 1 - Division 1 Finals, [Online; accessed 17. Nov. 2023], 2023.
[Online]. Available: https://kuachi.gg/cups/dacaa5af-a48a-4699-b181-
a5de43f8c658/stage/1.

30

https://doi.org/10.1016/j.cor.2019.104856
http://dx.doi.org/10.1016/j.cor.2019.104856
https://doi.org/10.1016/j.entcom.2022.100540
https://doi.org/10.1016/j.entcom.2022.100540
http://dx.doi.org/10.1016/j.entcom.2022.100540
http://dx.doi.org/10.1016/j.entcom.2022.100540
https://doi.org/10.1016/j.orl.2016.09.003
http://dx.doi.org/10.1016/j.orl.2016.09.003
https://doi.org/10.1016/j.cor.2022.105821
http://dx.doi.org/10.1016/j.cor.2022.105821
http://dx.doi.org/10.1016/j.cor.2022.105821
https://doi.org/10.48550/ARXIV.2110.01111
https://arxiv.org/abs/2110.01111
https://arxiv.org/abs/2110.01111
https://kuachi.gg/cups/dacaa5af-a48a-4699-b181-a5de43f8c658/stage/1
https://kuachi.gg/cups/dacaa5af-a48a-4699-b181-a5de43f8c658/stage/1

	Introduction
	Acknowledgements
	Background and Motivation
	 Scope and aims of this project

	Definitions
	Literature Review
	``Design Guidelines for Domain Specific Languages'' *dsl-guidelinesdsl-guidelines
	``Algebraic graphs with class (functional pearl)'' *Mokhov2017SepMokhov2017Sep
	``The structure, efficacy, and manipulation of Double Elimination tournaments'' *double-elim-structure-efficacy-manipulationdouble-elim-structure-efficacy-manipulation
	``Double Elimination Tournaments: Counting and Calculating'' *double-elim-ccdouble-elim-cc
	``Simulating competitiveness and precision in a tournament structure: a reaper tournament'' *reaperreaper and ``Reaper Tournament System'' *reaper2017reaper2017
	Description of the Reaper tournament structure algorithm
	Reaper Elimination
	``Quantifying the unfairness of the 2018 FIFO World Cup qualification'' *fifa-quant-unfairnessfifa-quant-unfairness and ``Risk of Collusion: Will Groups of 3 Ruin the FIFA World Cup?'' *fifa-risk-of-collusionfifa-risk-of-collusion
	``Handling fairness issues in time-relaxed tournaments with availability constraints'' *fairness-time-relaxedfairness-time-relaxed
	``The impossibility of a perfect tournament'' *perfect-impossibleperfect-impossible
	``A new knockout tournament seeding method and its axiomatic justification'' *knockout-seedingknockout-seeding
	``The efficacy of tournament designs'' *tournament-efficacytournament-efficacy

	Design
	Analogies between sorting networks and tournaments
	 A Type for Tournaments
	Final Definitions
	The Journeyman eDSL: An accumulating continuation over Tournament
	A virtual machine for Tournaments
	Tournament Interaction and Display

	Demonstration of the Journeyman eDSL
	Round Robin and Group Stage Round Robins
	Insertion Sort, and I Can't Believe It Can Sort
	Single Elimination
	Double Elimination

	Future work and limitations
	References

